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ABSTRACT 

This thesis presents new control strategy based on Sliding Mode and Adaptive 

Integral Sliding Mode for the synchronization and anti-synchronization of chaotic 

systems. Two cases are considered: (i) systems with known parameters, and (ii) 

systems with unknown parameters. In case (i) the synchronization and anti-

synchronization are achieved through sliding mode control, while in case (ii) the 

adaptive integral sliding mode control is used. To employ the adaptive integral sliding 

mode control, the error system is transformed into a special structure containing 

nominal part and some unknown terms. The unknown terms are computed adaptively. 

Then the error system is stabilized using integral sliding mode control. The stabilizing 

controller for the error system is constructed which consists of the nominal control 

plus some compensator control. The compensator controller and the adapted laws are 

derived on the basis of Lyapunov stability theory. Three numerical examples, (i) 

Lorenz system (ii) hyper-chaotic Lorenz-Stenflo system and (iii) hyper-chaotic 

memristor oscillator systems are shown to illustrate and validate the synchronization 

schemes presented in this thesis. 
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Chapter 1 

1. INTRODUCTION 

1.1   Introduction 

All physical systems are nonlinear by nature. In order to attain the better 

understanding about the dynamical behavior of the different nonlinear systems, an 

interesting and important phenomenon is to investigate the synchronization between 

these dynamical systems. Synchronization, observed as naturally occurring process, 

has significant impact in diverse areas of engineering, sciences and even in the social 

life. Synchronization of nonlinear systems is an attractive area among the researchers 

of different disciplines due to its numerous applications in the fields of engineering 

and technology. Noteworthy efforts by researchers have been devoted to investigate 

the problem of synchronization of nonlinear systems. To address the problem of 

synchronization of nonlinear systems demands the investigation of different 

dynamical parameters associated with nonlinear systems such as, unknown dynamics 

which have strong influence on synchronization. This dynamical property of 

nonlinear urge to be investigated along with nonlinear systems, because their impact 

on the performance of nonlinear systems cannot be ignored. In different nonlinear 

systems, different parameters can be source of instability and degrade the closed-loop 

performance of nonlinear systems. Figure 1.1 demonstrates the basic model for 

synchronization of nonlinear master-slave systems through an appropriate controller. 

Convergence of error is assured by selection of a suitable control signal u(t). 

         Figure 1.1: Block diagram of synchronization using controller. 
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This work describes a scheme that applies master/slave chaotic synchronization 

systems. A sliding plane is chosen to design a sliding mode controller to ensure 

robustness. In the presence of system uncertainty, the slave chaotic system is then 

synchronized with the master. The Simulation results indicate that the synchronization 

error state asymptotically converges to the origin of the phase plane, implying that the 

master/slave chaotic system synchronization is achieved using Sliding Mode Control 

for known parameters while the Integral Sliding Mode Control for unknown 

parameters is in operation. 

1.1.1   Overview 

Synchronization and Anti-synchronization of chaotic systems is the rudimentary 

determination of this research work. We need to bring error system to region from any 

initial condition. The techniques used are Sliding Mode Control and Adaptive Integral 

Sliding mode Control. Appropriate Hurwitz sliding surface and a Lyapunov function 

are selected for the stabilizing controller. Adaptive laws strictly obey Lyapunov 

function of stability analysis. There are three systems uses in the thesis and these 

results are verified through simulation studies using MATLAB. 

1.1.2   Motivation 

The history of the attempts made for inventing, building and designing systems, 

having the capability to control the models which have parameters, whose values are 

unknown is long and rich. The chaotic systems have been a topic of interest for the 

researchers over the last three/four decades. It is hardly possible to avoid contact with 

chaotic systems. Such problems arise in our daily life. Some of these problems are 

simple to solve but there are control problems with more complications. 

Synchronization of nonlinear systems contains diverse area of application in almost 

every field of life. It is quite difficult to discuss all the application areas in this short 

section, however some active research areas and applied examples of the 

synchronization are described. 

1.2   Problem statement  

The purpose of this study is to develop appropriate synchronization schemes for two 

nonlinear systems working according to master-slave principal.  
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 That addresses Complete Synchronization and anti-synchronization of two 

identical nonlinear chaotic systems. 

1.3   Application of Research 

As we are dealing with the chaotic systems, there are many examples of these systems 

in our daily life. The chaotic systems are applicable in our daily life, like the 

worldwide weather, the heart and brain. We have begun to understand that the tools of 

chaotic theory can be applied on the way to understanding, manipulation, and control 

of a variety of systems, with numerous of the practical application coming after 1990. 

Chaotic system is applicable in actual-world as epileptic seizure, heart fibrillation, 

neural process, chemical reactions, climate, industrial control processes, and many 

more. 

1.4   Structure of the Thesis 

Chapter 2: Literature review 

This chapter will give us a review the literature published about the synchronization 

of chaotic systems. On the basis of literature review, a decision is taken about the 

proposed control strategy to use for selected example of synchronization systems.  

Chapter 3: Proposed algorithm 

This chapter contains the proposed algorithm synchronization and anti-

synchronization of chaotic systems. Adaptive Integral Sliding Mode developed to 

investigate the problem of synchronization and anti-synchronization of nonlinear 

systems under the known and unknown parameters, using lyapunov function to check 

stability. 

Chapter 4: Numerical examples 

This chapter present synchronization of two identicle chaotic systems with known and 

unknown parameters, the proposed control technique, Sliding Mode Control for 

known parameters, while Adaptive Integral Sliding Mode Control for unknown 

parameters. 
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Chapter 5: Conclusion and future work 

A brief conclusion of thesis is outlined in this Chapter. Moreover, some future 

research proposals are suggested for the researchers interested to work in the area of 

synchronization and anti-synchronization of nonlinear systems. 
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Chapter 2 

1. LITRATURE REVIEW 

2.1 Introduction 

This chapter presents the literature review of synchronization and anti-

synchronization of chaotic systems and sliding mode control. This study will help to 

design a new control strategy for synchronization and anti-synchronization of chaotic 

systems. 

2.2 Chaos 

Chaos theory describes the qualitative study of unstable aperiodic behavior in 

deterministic nonlinear dynamical systems. A dynamical system is called chaotic if it 

satisfies the three properties: boundedness, infinite recurrence and sensitive 

dependence on initial conditions [1], which popularly known as the butterfly effect.  

Chaos is characterized by the way a dynamical system which does not repeat itself, 

even though the system is governed by deterministic equations [2]. In the same way 

that time and the frequency are used to identify chaotic signals, phase-plane and 

correlation are used to identify the attractor and randomness of the chaotic system. 

The attractor is a region of the state space from which there are no exit paths. That is, 

points that get close enough to an attractor remain close even if they are slightly 

disturbed. Attractors contain of single state called an equilibrium state, or a cycle of 

states called a limit cycle [2]. For chaotic systems, the attractor does not settle to one 

of these but explores all of the state space around the attractor for all time without 

ever repeating. 

Chaotic systems have been invoked as details for, or as causal significantly to 

explanation of, actual-world behaviors. Several examples are epileptic seizure, heart 

fibrillation, neural process, chemical reactions, climate, industrial control processes 

and so far forms of message encryption. Aside from irregular performance of actual-

world systems, chaos is as well invoked to make clear features such as the real 

trajectories exhibited in a specified state space or the sojourn times of trajectories in 
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exacting regions of state space [4, 7]. The nature of scientific details in the literature 

on chaos is carefully under-discussed to put it gently. 

Figure 2.1 show the trajectory of the Lorenz attractor in the phase space, depicting the 

stretching and folding properties [3], which can be seen when plotting the states of the 

system against each other. 

           

                Figure 2.1: The phase portrait of 
321

,, xxx  

A significant development in chaos theory occurred when Lorenz discovered a 

chaotic system of a weather model [2]. Subsequently, Rössler discovered a chaotic 

system in 1976 [13]. Chaos theory has applications in several fields of science and 

engineering such as oscillators, dynamos, Tokamak systems, chemical reactions, 

neural networks, neurology, biology, electrical circuit‟s cryptosystems, memristors 

random bit generator etc. 

Some of real life phenomena exhibit linear behavior, whereas others seem to be 

nonlinear. Swirling smoke from cigarettes, a waving flag in wind, randomly dribbling 

water through faucet, behavior of petrol flow inside piping, a chart of human 

vascularisation, biological populations all accommodate a sort of chaotic order [1].  

A mathematical model of chaos was first suggested by Lorenz, meteorology, in 1963 

[5]. After Lorenz up to 2005 a variety of popular chaotic systems were introduced by 

Rikitake [4, 6, 7], R¨ossler [8], Shimizu-Morioka [9], HindmarshRose [10], Chua 

[11], Rucklidge [12], Sprott [13], Chen [14], L¨u [15] and Liu [16]. In parallel with 

the developments, chaos and chaotic systems have been used in many scientific 

disciplines such as engineering, computing, communication, medicine, biology, 

management-finance and consumer electronics [17]. Accord-ingly, many novel 
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chaotic and hyper-chaotic systems displaying different dynamical behaviors have 

appeared in literature [18, 19, 26].  

A hyperchaotic attractor is typically defined as chaotic behavior with at least two 

positive Lyapunov exponents. Combined with one null exponent along the flow and 

one negative exponent to ensure the boundness of the solution, the minimal dimension 

for a hyperchaotic system is 4. 

Recently, there has been great interest in chaotic research on hyperchaotic systems 

and their applications in secure communications, data encryption, etc. The first four-

dimensional hyperchaotic system was discovered by O.E. Rössler in 1976. This figure 

is taken from [19]. 

                          

                                  Figure 2.2: First Rossler hyperchaos.  

Recently, the generation of hyper chaos and the hyperchaotic circuit realization have 

attracted researchers‟ increasing attention. The hyperchaotic system has at least two 

positive Lyapunov exponents, indicating that its dynamics are expanded in more than 

one direction simultaneously. For the autonomous continuous system, the dimension 

of a hyperchaotic attractor must be at least four, however, for a chaotic attractor, 

three-dimension is enough and it has just a single positive Lyapunov exponent. 

Therefore, compared with ordinary chaotic system, hyperchaotic system has more 

complicated and richer dynamics so as to be better used in many chaos-needed fields. 

This thesis presents control strategy for chaotic control system. The core 

determination of this work is to introduce a new control technique for chaotic systems 

A sliding mode control technique is introduced for known, while adaptive integral 

sliding mode control technique with unknown parameters of chaotic system. 
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2.3 Synchronization 

Synchronization is based on the concept of closeness of the frequencies between 

different periodic oscillations generated by two systems that one is a master or drive 

system and the other one is a slave or response system. While chaos synchronization 

is unlikely to achieve, even if chaotic subsystems are little different with almost the 

same initial states, their outputs tend to diverge from each other dramatically as time 

evolves. 

Synchronization processes are ubiquitous in our lives, which play a very important 

role in many different contexts, such as synchronous communication, signal 

synchronization (for example, synchronization between video and audio signals), 

firefly bioluminescence. Synchronization occurs ubiquitously in natural and synthetic 

systems, such as neural systems, biological systems, social systems, communication 

systems, and the Internet, geostationary satellite, synchronous motor, database 

synchronization and Synchronization is a typical collective behavior in nature and 

technology, such as the synchronous swing of clocks, the generation of harmonic 

oscillator, and the flocking phenomenon [10]. 

In the last two decades, there has been considerable interest devoted to the 

synchronization of chaotic and hyperchaotic systems. In their seminal paper in 1990, 

Pecora and Carroll [11] introduced a method to synchronize two identical chaotic 

systems and showed that it was possible for some chaotic systems to be completely 

synchronized. Subsequently, chaos synchronization has been applied in a wide variety 

of fields including physics [12], chemistry [13], ecology [14], secure communications 

[15-16], cardiology [17], robotics [18], complex dynamical networks etc.  

In the past twenty years, various types of synchronization have been proposed and 

investigated, e.g., complete synchronization [7, 8], lag synchronization [9–10], 

anticipated synchronization [12], phase synchronization [13], project synchronization 

[17], generalized synchronization [19], etc. As a special case of generalized 

synchronization, anti-synchronization is achieved when the sum of the state variables 

of master and slave system converges to zero asymptotically. It has been 

experimentally and numerically verified that the coupled chaotic systems can achieve 

anti-synchronization [21–25]. Recently, some control methods have been utilized to 
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anti-synchronize two identical or non-identical chaotic systems and derive 

theoretically some sufficient anti-synchronization conditions, e.g., observer control [ 

28], active control [29], back-stepping control [36], adaptive control [29,30], sliding 

mode control [41], nonlinear control [37], H ∞ control [39], etc. 

In this thesis, a new control scheme based on the adaptive integral sliding mode 

control for the chaotic synchronization of two identical chaotic systems is used. The 

sliding mode control method is often used because of its inherent advantages of easy 

realization, fast response and good transient performance as well as its insensitivity to 

parameter uncertainties and external disturbances. 

Dutch researcher Christian Huygens was probably the first scientist who observed and 

described the synchronization phenomena in seventeenth century. In 1658, Christian 

Huygens investigated the synchronization between two weekly coupled pendulum 

clocks [8]. Despite the study of the first synchronization phenomena, the actual work 

on synchronization of nonlinear systems was started late in 1920. After few years in 

1927, Balthasar Vander Pol extended the efforts of W. H. Reck and J. H. Vincent by 

obtaining the theoretical and practical results for synchronization [8]. Modern 

nonlinear dynamics revived in 1990s, when different new dynamical properties of 

nonlinear systems were explored and innovative work of numerical methods were 

recognized for controllability and stability analysis of the dynamical nonlinear 

systems. Peccora and Carrol [9] gives the idea of synchronization of nonlinear 

(chaotic) systems, by investigating the properties of two nonlinear systems and 

described that two nonlinear systems can be synchronized by linking them with a 

common signal. After the inspirational work of Peccora and Carrol, on 

synchronization of dynamical systems, this problem attracted a great number of 

researchers from different fields of engineering and sciences. Considerable research 

work has been carried out to investigate the synchronization phenomena in different 

nonlinear systems and different control strategies have been developed [10].  

Research work on synchronization of nonlinear systems is briefly revisited as follows. 

Since after the pioneer work on synchronization of two identical nonlinear systems, 

namely, response and drive systems [9], the problem of synchronization of nonlinear 

systems has been extensively studied in both theoretical and practical systems. The 
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Study of synchronization is evolved with the dynamical parameters of nonlinear 

systems such as unknown parameters etc. 

There are some main types of synchronization:  

(1) Complete Synchronization (2) Generalized Synchronization (3) Phase 

Synchronization (4) Lag Synchronization (5) Projective synchronization (6) 

Anticipatory Synchronization.  

This is illustrated in table 2.1:  

(1) Complete synchronization: When driven and response meet to be 

exactly same. 0)()(lim 


tXtY
t

. 

(2) Generalized synchronization: Synchronization between the states of 

two systems by a functional relation is defined as generalized 

synchronization. 0)()(lim 


tFXtY
t

.where F is constant. 

(3) Phase synchronization: When their phase difference remains bounded 

and amplitudes remain uncorrelated.  .0)()( 21  tt   Where, )(1 t  

and )(2 t indicate the phases of two coupled oscillators. 

(4) Lag synchronization:  when dynamics is described by delay 

differential equations. One of the oscillators follows of other. 

,0)()( 11  tXtX Where  is delay. 

(5) Projective synchronization: The state of master )(tX and response 

system )(tY synchronize with respect to scaling factor . ).()( tXtY   

 

(6) 

Anticipatory Synchronization: Anticipatory synchronization is 

defined as the states of the drive system anticipate the states of the 

master system with a time delay .0  

 



11 

 

2.3.1 Complete Synchronization 

The trajectories of the driven and the response systems converge to be accurately the 

same. This is the first and the simplest form of synchronization [8, 20]. This occurs in 

coupled somehow the same systems and well referred as a conventional 

synchronization or an identical synchronization.  

Chaotic systems are dynamical systems that defy synchronization, due to their 

essential feature of displaying high sensitivity to initial conditions [9]. As a result, two 

identical chaotic systems starting at nearly the same initial points in phase space 

develop onto trajectories which become uncorrelated in the course of the time. 

Nevertheless, it has been shown that it is possible to synchronize these kind of 

systems, to make them evolving on the same chaotic trajectory [3, 8]. When one deals 

with coupled identical systems, synchronization appears as the equality of the state 

variables while evolving in time. We refer to this type of synchronization as complete 

synchronization (CS). 

Two continuous-time chaotic systems: 

                                              ))(()( txFtx 
                                                      (2.1) 

and 

                                             ))(()( tyHty 
                                                      (2.2) 

are said to be complete synchronization if: 

                                            0)()(lim 


txty
t

                                           (2.3) 

 

2.4 Sliding Mode Basics 

2.4.1 Sliding Mode Control  

Sliding mode control (SMC) is a linear as well as nonlinear control system design 

technique with inherent robustness properties beside parametric changes, turbulence 

and perturbation etc. Unlike the classical, recent and healthy control systems design 

method. This method is based on the on-off sort of control, where the controller 

switches the control path depending upon the value of predefined polynomial which is 
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a purpose of the system position and is term as sliding surface. Due to the nature of 

the controller it is considered as an alternating type of control technique and the 

controller formation is relatively simple to design and execute. As well being a 

control systems technique, it is also used for the irritation estimation and rejection. 

SMC [8] is a variable structure control systems design technique. The very basic 

notion of sliding mode control was given in [10]. 

There are two fundamental points of interest of the sliding mode control. First is that 

dynamic behavior of the structure might be customized by the specific selection of 

sliding function. Furthermore, the closed loop reaction develops in to absolutely 

unresponsive to some specific uncertainties. The concept of optimal sliding mode 

control design was discussed in [11].  The very important control strategies for sliding 

mode control of indeterminate systems were briefly discussed in [12, 13]. The basic 

principle of SMC is outlined in the following important references [14, 15]. 

2.4.2 Integral Sliding Mode Control 

Integral Sliding Mode Control (ISMC) was initially proposed to impose a sliding 

mode from the start of the system response, which means a controller based on ISMC 

ideas can give satisfied to matched uncertainties all through the entire system 

response [16]. In this section,  Integral Sliding Mode (ISM) controllers is explain, and 

the particular features linked with ISMC design are discussed. It is assumed that state 

information is presented for the controller design. As established in this chapter, when 

using sliding mode based technique, the system state trajectories are insensitive to 

matched uncertainties while in the sliding mode [16]. 

In Integral Sliding Mode Control (ISMC), it is assumed that there exists a nominal 

plant, for which an appropriately designed state feedback controller has already been 

designed to make sure asymptotic stability of the closed-loop system, and to satisfy 

predefined performance specifications. A discontinuous controller is „added‟ to the 

nominal state feedback controller to make sure the nominal performance is preserved, 

and the system is not sensitive to outer disturbances [17]. This design philosophy 

provides the opportunity to retro-fit an ISMC to the existing baseline controller to 

compensate for the matched uncertainties and external disturbances all through the 

system response. 
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2.4.3 Sliding Surface Design 

This section explores variable structure control (VSC) as a speedy swapped feedback 

control causing in sliding mode [14, 16]. According to a rule, the gain in every 

feedback track switches between two values that depend on the value of the state at 

every point. The reason for transferring control function is to make the system state 

trail onto a pre-indicated plane in the state space and to keep up system state path on 

this surface for consequent time. The surface is known as a switching surface. The 

feedback track has gained one when the plant states route is “above” the surface and 

different gains if the path is “beneath” the surface. This surface characterizes the 

principle for proper switching. This surface is similarly named the sliding surface.  

The uncertainties and disturbances are always present in practical system and in such 

cases, discontinuous control ensures robustness. Figure 2.2 shows the reaching phase 

(RP), sliding mode (SM) and sliding surface (SS). 

 

Figure 2.3: The Sliding Phase, Reaching Phase and Sliding Surface. 

2.4.4 Chattering Phenomenon 

This part is about an indication of the chattering phenomenon. In sliding mode 

scheme the control signal exhibits high frequency oscillation called chattering. Such 
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chattering has much negative effect in real world applications. This phenomenon may 

lead to large unwanted oscillations that degrade performance of the system. In order 

to avoid chattering effect, various solutions of this problem have been proposed in 

[17], [18] i.e. the boundary layer design. A new design scheme based on estimation of 

sliding variable was presented [19]. The method based on the describing function 

approach was developed for chattering analysis of the system in the presence of the 

un-modeled dynamics. Another way to reduce chattering effect is by means of Second 

Order Sliding Mode (SOSM) and the High Order Sliding Mode (HOSM) control 

techniques. Figure 2.3 shows the chattering effect. 

In above section main property and drawback of chattering have been discussed. To 

reduce the chattering effect some approaches were proposed. The interesting and the 

most recent method for the removal of the chattering is the second or higher order 

sliding mode control theory. 

 

                                  Figure 2.4: The Chattering Effect. 
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Chapter 3 

A new control algorithm for complete synchronization 

and anti-synchronization based on sliding mode 

3.1 Introduction 

In this chapter a new control technique is presented to achieve Complete 

Synchronization (CS) and anti-synchronization between two identical chaotic 

systems. Two cases are considered, (i) with known parameters   (ii) With unknown 

parameters. Case (i) is solved with sliding mode control while case (ii) solved using 

adaptive integral sliding mode control. 

3.2 Problem formulation 

Consider the two chaotic systems: 

)()( wLwlw                                                                                   (3.1) 

usDsds  )()(                                                                             (3.2) 

Where
nT

n Rwwww  ),...,,( 21  and (𝑠1, 𝑠2, … 𝑠𝑛)𝑇 ∈  𝑅𝑛  are state vectors of the 

drive system (3.1) and response system (3.2) respectively. p and q are real 

vectors of known parameters. 
pnRwL )(  and 𝐷 𝑠 ∈ 𝑅𝑛×𝑞  are matrices. 

nRwl )(

and 
mRsd )( are vectors of nonlinear functions, and 

mRswu ),( is the real control 

vector. 

The error is defined as: 

qwse                                                                                                 (3.3)  

Where 1q , for synchronization and 1q , for anti-synchronization. 

Then error dynamics is: 

 wqse  )()( sDsd  })()({ wLwlqu                                          (3.4)  

The control objective in complete synchronization is to design ,u such that error 

system (3.4) becomes asymptotically stable. 



16 

 

Case 1: synchronization and anti-synchronization with known parameter: 

Consider the following system: 

)()( wLwlx                                            

usDsdy  )()(                                             

Define the error as: 

qwse 

                                             

(3.5) 

Where 





















ne

e

e

e


2

1

.nR By taking the derivative of equation (3.5) with respect time, the 

dynamical error system is obtained as:                                       
 

})()({)()(  wLwlqusDsdsqwe                              (3.6) 

By choosing 

eewLwlqsDsdu  })()({)()(                                    

Where, 

























v

e

e

e

ee

n



3

2

 

Here v is the new input, and then system (3.6) becomes: 

ve

ee

ee

n 















32

21

                                                                                                              (3.7)

 

Define
 
the Hurwitz sliding surface system (3.7) as: 
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vece

eece

eece

ii

n

i

nii

n

i

nii

n

i



























1

1

2

2

1

2

1

1

2

1










 

                                                              (3.8) 

By choosing kecev ii

n

i

 





 1

1

2

2 , we have  k . Therefore the system (3.7) 

is asymptotically stable. 

From this we conclude that, 0 , therefore 0),( 21 neee  . 

Case 2: synchronization and anti-synchronization with unknown parameter: 

Let ̂ ,̂  be estimate of ,   respectively,  
~

 and  ˆ~
  be error in 

estimating ,  . 

Then equation (3.1) and (3.2) can be written as:  


~

)(ˆ)()( wLwLwlw 
                                                                (3.9)  

usGsDsds  
~

)(ˆ)()(
                                                           (3.10) 

Define the error as: 

qswe 

                                             

(3.11) 

By taking the derivative of equation (3.11) with respect time, we have:     

}
~

)(ˆ)()({
~

)(ˆ)()(  wLwLwlqusDsDsde

sqwe









               (3.12) 

 

By choosing 

eewLwlqsDsdu  }ˆ)()({ˆ)()(     

Then equation (3.12) becomes 


~

)(
~

)( wLqsDeee 
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

















ne

e

e









2

1

 
~

)(
~

)(
3

2

wLqsD

v

e

e
























 

                                                                      (3.13) 

To employ the integral sliding mode control, choose the nominal system for (3.13) as: 

0

32

21

ve

ee

ee

n 















                                                                                                                          
(3.14) 

Define
 
the Hurwitz sliding surface system (3.14) as: 

01

1

2

20

1

2

10

1

2

10

vece

eece

eece

ii

n

i

nii

n

i

nii

n

i




































 

                                                                      (3.15) 

By choosing 01

1

2

20 kecev ii

n

i

 





 , we have 00  k . Therefore the system 

(3.14) is asymptotically stable. 

Now choose the sliding surface for the system (3.13) as: z 0
  

Where, z is some integral term computed later, to avoid the reaching phase, choose 

)0(z  such that 0)0(  .Choose svvv  0 where, 0v  is the nominal input and sv  is 

compensator term computed later.  

Where, ]11[ 121  ncccC 
 

is chosen in such a way that  become Hurwitz 

polynomial. 

Then,
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zwqCLsCDvvece
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By choosing a Lyapunov function: 
~~

2

1~~

2

1

2

1 2 TTV   design the adaptive 

laws for  ˆ,
~

,ˆ,
~

 and compute 
sv such that 0V .  

Consider a Lyapunov function 
~~

2

1~~

2

1

2

1 2 TTV  . Then 0V if the adaptive 

laws for  ˆ,
~

,ˆ,
~

 and the value of  
sv  are chosen as: 

0,,,where
~

)(
~

~
)(

~

,

212

1

01

1

1

2





 
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



kkkkCsD

kCwLq

kvvecez

TT

TT

sii

n

i


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







                             

(3.16)

  

Proof: 
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By using  

0,,,where,
~
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We have 


~~~~

21

2 TT kkkV   

From this we conclude that 0
~

,
~

,  , since 0 , therefore 0),( 21 neee  . 
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Chapter 4 

Numerical Examples 

Introduction 

In this chapter, three different numerical examples are considered to verify the 

proposed control strategy. 

4.1 Numerical Example 1: (Lorenz system) 

The following example is taken from [24], where synchronization for this system is 

obtained by using finite-time controller, while we used sliding mode control for 

known parameter and integral sliding mode control technique for unknown parameter 

to achieve synchronization of chaotic system. We compare our result with given 

results in [24], and our error result approaching to zero faster as compare to result 

presented in [24].  

Consider the Lorenz system [24] as a master system 

3213

21212

121 )(

bxxxx

xxxcxx

xxax













                                           (4.1) 

and the slave system 

 

                                                                         (4.2) 

 

When system parameters are chosen as: ,10a ,3/8b ,28c  then this system 

shows chaotic behavior with initial conditions: 
Tx ]0,2,1[)0(   

33213

221212

1121 )(

ubyyyy

uyyycyy

uyyay












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                      Figure 4.1: The phase portrait of zyx ,,  

Case 1: synchronization and anti-synchronization with known parameters: 

The error signals are defined as: 

333222111
,, xqyexqyexqye 

                                                       
(4.3)  

Where 1q , for synchronization and 1q , for anti-synchronization. 

Then the error dynamics becomes: 

3321321333

231213121222

11212111

)(

)(

)()(

ubxxxqbyyyxqye

uxxxcxqyyycyxqye

uxxaqyyaxqye













                             (4.4)  

By choosing 

vbxxxqbyyyu

exxxcxqyyycyu

exxaqyyau







3213213

3312131212

212121

)(

)(

)()(

 

Where v  is the new input, which can be written as: 

ve

ee

ee







3

32

21







                                                                                                                (4.5)  

Define the Hurwitz sliding surface for nominal system (4.4) as: 

3211

2

0 2)1( eeee
dt

d
  
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Then,  

3210 2 eee   vee  32 2  

By choosing 0,2 032  kkeev  , we have 00  k . Therefore the error 

system (4.4) is asymptotically stable. 

In simulations, the initial conditions are chosen as given in [2], 
Tx ]0,2,1[)0(  , 

.]2,1,0[)0( Ty   The values of parameters are: ,10a ,3/8b 28c . 

Consider a Lyapunov function: )(5.0 0
2V  

Then,  

2

00000 )(  kkV    

From this we conclude that 00  ,
 
since 0 are Hurwitz therefore 3,...,1,0  iei , 

therefore the systems (4.5) are asymptotically stable. 

Simulation results: 

For synchronization we set q=1 in eq. (4.3): 

 

 

                   Figure 4.2: Time history of error variables for known parameters.           
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                  Figure 4.3: Synchronization between 1x and 1y  for known parameters. 

 

                  Figure 4.4: Synchronization between 2x and 2y  for known parameters.  

 

                  Figure 4.5: Synchronization between 3x and 3y  for known parameters.   
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For anti-synchronization we set q= -1 in eq. (4.15): 

 

                 Figure 4.6: Anti-synchronization between 1x and 1y  for known parameters.                 

 

                Figure 4.7: Anti-synchronization between 2x and 2y  for known parameters.  

 

                 Figure 4.8: Anti-synchronization between 3x and 3y  for known parameters. 
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Case 2: synchronization and anti-synchronization with unknown parameters 

Let ,ˆ,ˆ,ˆ cba  be estimated of ,,, cba  and let cccbbbaaa ˆ~,ˆ
~

,ˆ~   be errors. 

Thus system (4.1) and (4.2) can be written as:  

33213

312112

12121

~ˆ

~ˆ

)(~)(ˆ

xbxbxxx

xxxxcxcx

xxaxxax




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





                                                                                   (4.6) 

333213
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~ˆ

~ˆ

)(~)(ˆ

uybybyyy
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





                                                                           (4.7) 

The error signals are defined as: 

333222111 ,, xqyexqyexqye 
                                     

                      (4.8) 

Then the dynamics of the error system becomes: 
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xbxbxxquybybyyxqye
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













      (4.9) 

By choosing 

vxbxxqybyyu

exxxxcqyyyycu

exxaqyyau







)ˆ()ˆ(

)ˆ()ˆ(

)(ˆ)(ˆ

3213213

33121312112
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Where v  is the new input, the system (4.9) can be written as: 

vxbqybe

excqyce

exxaqyyae







333

3112

212121

~~

~~
)(~)(~







                                                                                   

  
(4.10)  

To employ the integral sliding mode control, choose the nominal system for (4.10) as: 

03

32

21

ve

ee

ee













                                                                                                                 (4.11)  
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Define the Hurwitz sliding surface for nominal system (4.11) as: 

3211

2

0 2)1( eeee
dt

d


  

Then 

 veeeee  323210 22    

By choosing 0,2 032  kkeev  , we have 00  k . Therefore the nominal 

system (4.9) is asymptotically stable. 

Now choose the sliding surface for the system (4.8) as: zeeez  3210 2
 
 

Where, z is some integral term computed later. To avoid the reaching phase, choose 

)0(z  such that 0)0(  .   

Choose svvv  0 where, 0v  is the nominal input and sv  is compensator term 

computed later. 

 Then,   

zvvxbqybe

xcqycexxaqyya

zeee

s










0333

1121212

321

~~
2

~2~2)(~)(~
2

 

By choosing a Lyapunov function: )~~~(
2

1

2

1 2222 cbaV   , design the adaptive 

laws for ccbbaa ˆ,~,ˆ,
~

,ˆ,~  and compute 
sv such that 0V .  

Consider a Lyapunov function: )~~~(
2

1

2

1 2222 cbaV   . Then 0V if the 

adaptive laws for ccbbaa ˆ,~,ˆ,
~

,ˆ,~  and the value of  
sv  are chosen as: 

ccckxqyc

bbbkxqyb

aaakxxqyya

kvvkkeez s









~ˆ~22~
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~ˆ,~)()(~

,02

11

33

1212

0032

















                                                    

(4.12)  

Proof: 
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Since 

 

)22~(~)
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~
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~~~~~~~~)
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~2~2)(~)(~(

~~~~~~

1144

1212032
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1121212
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xxyyaazvvee

ddccbbaazvvxbqybe
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ccbbaaV

s

s



























 

By using  

ccckxqyc

bbbkxqyb

aaakxxqyya

kvvkkeez s









~ˆ~22~

~ˆ,
~~

~ˆ,~)()(~

,02

11

33

1212

0032

















      

   

We have 

2

3

2

2

2

11

2 ~~~ ckbkakkV   .  

From this we conclude that 0~,
~

,~, cba . Since 0 , therefore .0),,(
321
 eeee  

In simulations, the initial conditions are chosen as: 
Tx ]0,2,1[)0(  , 

Ty ]2,1,0[)0(  . 

The true values of the unknown parameters are chosen as: ,10 ,3/8b .28c  

Simulation result: 
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For synchronization we set q=1 in eq. (4.8): 

 

                  Figure 4.9: Time history of error variable of unknown parameters. 

 

                 Figure 4.10: Synchronization between 1x and 1y for unknown parameters. 

 

                 Figure 4.11: Synchronization between 2x and 2y  for unknown parameters. 
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                Figure 4.12: Synchronization between 3x and 3y
 
for unknown parameters. 

 

    Figure 4.13: Estimation of Unknown parameters hh ba ,  and hc  for synchronization. 

For anti-synchronization we set q= -1 in eq. (4.20): 
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            Figure 4.14: Anti-synchronization between 1x and 1y  for unknown parameters.  

 

          Figure 4.15: Anti-synchronization between 2x and 2y  for unknown parameters. 

 

           Figure 4.16: Anti-synchronization between 3x and 3y  for unknown parameters. 
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Figure 4.17: Estimation of Unknown parameters hh ba , , hc  for Anti-synchronization. 

 

                                Figure 4.18: Time history of surface. 

 

                                Figure 4.19: Time history of control input. 

 

Figure 4.20: Time history of adaptive controllers. 

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

Time(sec)

 

 

a
h

b
h

c
h

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

Time(sec)

 

 

surface

0 1 2 3 4 5 6 7 8 9 10
-60

-40

-20

0

20

Time(sec)

 

 

control input

0 1 2 3 4 5 6 7 8 9 10
-400

-200

0

200

400

Time(sec)

 

 

u
1

u
2

u
3



32 

 

4.2 Numerical Example 2: (Lorenz-Stenflo system) 

The following example is taken from [25], based on hyper-chaotic Lorenz-Stenflo 

system. where synchronization for this system is obtained using Linear-feedback 

control technique system, while we used sliding mode control for known parameter 

and adaptive integral sliding mode control technique for unknown parameter to 

achieve synchronization of chaotic system. we compare our result with given results 

in [25], and our error result approaching to zero faster as compare to result presented 

in [25].  

Consider the Lorenz-Stenflo system [25] as a master system 

414

3213

2312

4121

)(

)(

axxx

dxxxx

xxcxx

bxxxax

















                                                                                                (4.13) 

and the slave system 

4414

33213

22312

14121

)(

)(

uayyy

udyyyy

uyycyy

ubyyyay

















                                                                                         (4.14) 

When system parameters are chosen as: 7.0,26,5.1,1  dcba and ,3.0  then 

this system shows chaotic behavior with initial conditions: .]4,3,2,1[)0( Tx   

                 

                            Figure 4.21: The phase portrait of .,, 321 xxx  
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Case 1: synchronization and anti-synchronization with known parameters: 

The error signals are defined as: 

333222111 ,, qxyeqxyeqxye  , 444 qxye                                      (4.15) 

Where 1q , for synchronization and 1q , for anti-synchronization.  

Then the error dynamics becomes: 

44141444

3321321333

2231231222

112412111

)(

)()(

)()(

uaxxqayyxqye

udxxqxdyyyxqye

uxxcqxyycyxqye

ubxxxqabyyyaxqye

















                                     (4.16)  

By choosing 

vaxxqayyu

edxxxqdyyyu

exxcxqyycyu

bxxxaqbyyyau









))(()(

)()(

))(())((

e))(())((

41414

43213213

32312312

2124121

 

Where v  is the new input, which can be written as: 

ve

ee

ee

ee









4

43

32

21









                                                                                                       (4.17)  

Define the Hurwitz sliding surface for system (4.16) as:

43211

3

0 33)1( eeeee
dt

d
  

Then,  

433210 33 eeeee   veeee  4432 33  

By choosing 0,33 0432  kkeeev  , we have 00  k . Therefore the 

nominal system (4.16) is asymptotically stable. 

In simulations, the initial conditions are chosen as: 
Tx ]4,3,2,1[)0(  , 

Ty ]8,7,6,5[)0(  . 

The true value of the known parameters is: 7.0,26,5.1,1  dcba and .3.0  
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Consider a Lyapunov function: )(5.0 0
2V  

Then  

2

00000 )(  kkV    

From this we conclude that 00  ,
 
since 0 are Hurwitz therefore 4,...,1,0  iei , 

therefore the systems (4.17) are asymptotically stable. 

Simulation results: 

For synchronization we set q=1 in eq. (4.15): 

 

                  Figure 4.22: Time history of error variables for known parameters.              

 

                   Figure 4.23: Synchronization between 1x and 1y  for known parameters. 
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                  Figure 4.24: Synchronization between 2x and 2y of known parameters.  

 

                 Figure 4.25: Synchronization between 3x and 3y  known parameters. 

 

                 Figure 4.26: Synchronization between 4x and 4y  of known parameters. 
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               Figure 4.27: Anti-synchronization between 1x and 1y  of known parameters.  

 

             Figure 4.28: Anti-synchronization between 2x and 2y  of known parameters. 

 

               Figure 4.29: Anti-synchronization between 3x and 3y  of known parameters. 
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               Figure 4.30: Anti-synchronization between 4x and 4y  of known parameters. 

Case 2: synchronization and anti-synchronization with unknown parameters 

Let dcba ˆ,ˆ,ˆ,ˆ  be estimated of dcba ,,, and let dddcccbbbaaa ˆ~
,ˆ~,ˆ

~
,ˆ~   

be error. 

Thus system (4.13) and (4.14) can be written as:  

4414

33213

131112

4124121

~ˆ

~ˆ

~ˆ

~
)(~ˆ)(ˆ

xaxaxx

xdxdxxx
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





                                                             (4.18) 
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)(~ˆ)(ˆ
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
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





                                                         (4.19)

 The error signals are defined as: 

444333222111 ,,, qxyeqxyeqxyeqxye 
                                   

(4.20)

 
Then the dynamics of the error system becomes: 
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4441441444
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1412412
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(4.21) 

By choosing 

vxaxqyayu

exdxxqydyyu

exxxcxqyyycyu

exbxxaqybyyau
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Where v  is the new input, the system (4.21) can be written as: 

vxaqyae

exdqyde

ecqxcye

exbxxaqybyyae


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(4.22)  

To employ the integral sliding mode control, choose the nominal system for (4.22) as: 
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













                                                                                                                 (4.23)  

Define the Hurwitz sliding surface for nominal system (4.23) as:

43211

3

0
33)1( eeeee

dt

d
r


  

Then, 

 veeeeeeee  543243210 3333    

By choosing 0,33 0432  kkeeev  , we have 00  k . Therefore the 

nominal system (4.23) is asymptotically stable. 

Now choose the sliding surface for the system (4.22) as:

zeeeez  43210 33
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where, z is some integral term computed later. To avoid the reaching phase, choose 

)0(z  such that 0)0(  . 

Choose svvv  0 where, 0v  is the nominal input and sv  is compensator term 

computed later. Then, 

zvvxayaexdqyde
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By choosing a Lyapunov function: )
~~~~(
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1

2

1 22222 dcbaV   , design the 

adaptive laws for ddccbbaa ˆ,
~

,ˆ,~,ˆ,
~

,,ˆ,~  and compute 
sv such that 0V .  

Consider a Lyapunov function: )
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2
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2

1 22222 dcbaV   . Then 0V if the 
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~
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,,ˆ,~  and the value of  
sv  are chosen as: 
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                               (4.24) 

Proof: 

Since 
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We have 

2

4

2

3

2

2

2

11

2 ~~~~ dkckbkakkV   .  

From this we conclude that 0
~

,~,
~

,~, dcba .Since 0 ,therefore 

𝑒 = (𝑒1, 𝑒2, 𝑒3, 𝑒4) → 0.
 

In simulations, the initial conditions are chosen as: 
Tx ]4,3,2,1[)0(  , 

Ty ]8,7,6,5[)0( 

. The true value of the unknown parameters are chosen as: 

.7.0,26,5.1,1  dcba  

Simulation result: 

For synchronization we set q=1 in eq. (4.20) 

 

                  Figure 4.31: Time history of error variables of unknown parameters     
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                  Figure 4.32: Synchronization between 1x and 1y  for unknown parameters. 

 

                Figure 4.33: Synchronization between 2x  and 2y  for unknown parameters. 

 

                Figure 4.34: Synchronization between 3x and 3y  for unknown parameters.   
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                 Figure 4.35: Synchronization between 4x and 4y  for unknown parameters.  

Figure 4.36: Estimation of unknown parameters hhh cba ,,  and hd for synchronization.

 

For anti-synchronization we set q= -1 in eq. (4.20): 

 

            Figure 4.37: Anti-synchronization between 1x and 1y  for unknown parameters.   
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          Figure 4.38: Anti-synchronization between 2x and 2y  for unknown parameters. 

 

           Figure 4.39: Anti-synchronization between 3x and 3y  for unknown parameters. 

 

           Figure 4.40: Anti-synchronization between 4x and 4y  for unknown parameters. 
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Figure 4.41:Estimation of Unknown parameters hhh cba ,, , hd for Antisynchronization. 

 

                                       Figure 4.42: Time history of surface. 

 

                                     Figure 4.43: Time history of input controller. 

 

Figure 4.44: Time history of adaptive controllers. 
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4.3 NUMERICAL EXAMPLE 3: (Memristor system) 

The following example is taken from [23], where synchronization for this system is 

obtained by using sufficient asymptotic stability condition based on Lyapunov theory, 

while we used sliding mode control for known parameter and integral sliding mode 

control technique for unknown parameter to achieve complete synchronization (CS). 

We compare our result with given results in [23], and our error result approaching to 

zero faster as compare to result presented in [23].  

The drive system is taken as the following system: 

15

274

3615253

44342

2

51312311

xx

xx

xxxx

xxx

xxxxx





























                                                                          (4.25)
 

and the following system is considered as the response system: 
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1

2

51312311

yy

uyy

uyyyy

uyyy

uyyyyy


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















                                                                  (4.26) 

The true values of the parameters are taken as: 1,8.10,8.10,9 4321   ,

15,30,30 765   . In simulations, the initial conditions are chosen as:
 

)12,-3,-2,1,())0(),0(),0(),0(),0(( 54321 xxxxx
 

                          

                                         Figure 4.45: The phase portrait of  
321

,, xxx  
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Case 1: Synchronization and anti-synchronization with known parameters: 

The error signals are defined as: 

333222111 ,, qxyeqxyeqxye  , ,444 qxye 
555

qxye              (4.27) 

Where 1q , for synchronization and 1q , for anti-synchronization.  

The dynamics of the error system is: 

111555

27427444
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443424434222

2
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2
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}{
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






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







       (4.28)
 

By choosing 

2

2

5131231

2

51312311 }{ exxxxqyyyyu  

3443444342 }{ exxqyyu    , 

43615253615253 }{ exxxqyyyu    

vxqyu  }{ 27274   

where v is the new input, the system (4.28) can be written as: 

ve

ee

ee

ee

ee











5

54

43

32

21











                                                                                 

(4.29)  

Define 
 
 the Hurwitz sliding surface for system (17) as:𝜎0 = (1 + 𝐷)4𝑒1 

 

Then 

 𝜎 0 = 𝑒 1 + 4𝑒 2 + 6𝑒 3 + 4𝑒 4 + 𝑒 5 = 𝑒2 + 4𝑒3 + 6𝑒4 + 4𝑒5 + 𝑣 

By choosing𝑣 = −𝑒2 − 4𝑒3 − 6𝑒4 − 4𝑒5 − 𝑘𝜎, 𝑘 > 0, we have𝜎 0 = −𝑘𝜎0. Therefore 

the system (4.29) is asymptotically stable. 

In simulations, the initial conditions are chosen as:
 

)12,-3,-2,1,())0(),0(),0(),0(),0(( 54321 xxxxx
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)11,0.5,-2,-,2())0(),0(),0(),0(),0(( 54321 yyyyy
 

and
 

the  true values of the 

parameters are taken as:  1,8.10,8.10,9 4321   ,

15,30,30 765   . 

The numerical results are considered as two cases: 

(i). Synchronization: Choosing the scaling parameter 1q ,the synchronization of 

the drive system (4.25) and response system (4.26) is achieved as indicated by the 

convergence of the error state variables to zero. 

(ii). Anti-synchronization: Choosing the scaling parameter 1q ,the anti-

synchronization of the drive system (4.25) and response system (4.26) is achieved as 

indicated by the convergence of the error state variables to zero. 

Simulation results: 

For synchronization we set q=1 in eq. (4.27) 

 

                   Figure 4.46: Time history of error variables for known parameters. 
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                   Figure 4.47: Synchronization between 1x and 1y  of known parameters. 

 

                   Figure 4.48: Synchronization between 1x and 1y  of known parameters. 

 

                    Figure 4.49: Synchronization between 3x
 
and 3y  of known parameters. 
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                Figure 4.50: Synchronization between 4x
 
and 4y  of known parameters. 

 

                Figure 4.51: Synchronization between 5x
 
and 5y  of known parameters. 

For anti-synchronization we set q= -1 in eq. (4.27): 

 

          Figure 4.52: Anti-synchronization between 1x and 1y  of known parameters.             
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            Figure 4.53: Anti-synchronization between 2x and 2y  of known parameters. 

 

                 Figure 4.54: Anti-synchronization between 3x and 3y  of known parameters. 

 

        Figure 4.55: Anti-synchronization between 4x and 4y  of known parameters. 
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          Figure 4.56: Anti-synchronization between 5x and 5y  of known parameters. 

Case 2: synchronization and anti-synchronization with unknown parameters. 

Let 7,...,1,ˆ ii  be the estimates of 7,...,1, ii  and 7,...,1,ˆ~  iiii 
 

be the 

error in estimation of 7,...,1, ii  respectively. Therefore the systems (4.25) and 

(4.26) can be written as: 
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                                               (4.30)
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                                     (3.31) 

 

Then the dynamics of the error system becomes: 
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                  (4.32) 

By choosing 
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where v is the new input, the system (4.32) can be written as: 
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                              (4.33) 

Choose the nominal system for (4.33) as: 
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(4.34)
 

Define 
 
 the sliding surface for nominal system (4.34) as:𝜎0 = (1 + 𝐷)4𝑒1  

Then 

 𝜎 0 = 𝑒 1 + 4𝑒 2 + 6𝑒 3 + 4𝑒 4 + 𝑒 5 = 𝑒2 + 4𝑒3 + 6𝑒4 + 4𝑒5 + 𝑣 



53 

 

By choosing𝑣 = −𝑒2 − 4𝑒3 − 6𝑒4 − 4𝑒5 − 𝑘𝜎, 𝑘 > 0, we have𝜎 0 = −𝑘𝜎0. Therefore 

the system (4.34) is asymptotically stable. 

Now choose the sliding surface for system (4.33) as:𝜎 = 𝜎0 + 𝑧 = 𝑒1 + 2𝑒2 + 𝑒3 + 𝑧
 
 

where, z is some integral term computed later. To avoid the reaching phase, choose 

)0(z  such that 0)0(  .  Choose svvv  0 where, 0v  is the nominal input and sv  

is compensator term computed later. Then   
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(4.35) 

By choosing a Lyapunov function 
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                          (4.36)

  

Proof: 

Since 
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From this we conclude that 07,...,1,~, ii . Since 0 , therefore

0,,,, 54321 eeeee . 

In simulations, the initial conditions are chosen as:
 

)12,-3,-2,1,())0(),0(),0(),0(),0(( 54321 xxxxx
,

)11,0.5,-2,-,2())0(),0(),0(),0(),0(( 54321 yyyyy
 

and
 

the  true values of the 

parameters are taken as:  1,8.10,8.10,9 4321   ,

15,30,30 765   . 
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                    Figure 4.57: Time history of error variables for unknown parameters.                                                                                             

 

                   Figure 4.58: Synchronization between 1x and 1y  for unknown parameters.           

 

                 Figure 4.59: Synchronization between 2x and 2y for unknown parameters.             
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                Figure 4.60: Synchronization between 3x and 3y  for unknown parameters.             

 

                  Figure 4.61: Synchronization between 4x and 4y  for unknown parameters.             

 

                 Figure 4.62: Synchronization between 5x and 5y  for unknown parameters.             
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Figure4.63:Estimation unknown parameters ,,,,,, 654321  7  synchronization.             

For anti-synchronization we set q=-1 in eq. (4.33)                                                                                             

 

            Figure 4.64: Anti-synchronization between 1x and 1y  for unknown parameters.           

 

           Figure 4.65: Anti-synchronization between 2x and 2y for unknown parameters.             
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          Figure 4.66: Anti-synchronization between 3x and 3y  for unknown parameters.             

 

          Figure 4.67: Anti-synchronization between 4x and 4y  for unknown parameters.             

 

           Figure 4.68: Anti-synchronization between 5x and 5y  for unknown parameters.             
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Figure 4.69:Estimation of Unknown 654321 ,,,,,  , 7 of Anti-synchronization. 

 

                                      Figure 4.70: Time history of surface. 

 

                                       Figure 4.71: Time history of control input. 

 

Figure 4.72: Time history of adaptive controllers. 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 Introduction 

The work done by human being can never be complete. Taking into account this 

reality, this chapter is aimed to explain the results and conclusion of this research 

thesis. 

5.2 Conclusion 

This thesis presents the synchronization and anti-synchronization scheme between 

two identical chaotic systems. Two cases are considered (i) systems with known 

parameters, and (ii) systems with   unknown parameters. In case (i) the 

synchronization and anti-synchronization are achieved through sliding mode control, 

while in case (ii) the adaptive integral sliding mode control is used. To employ the 

adaptive integral sliding mode control, the error system is transformed into a special 

structure containing nominal part and some unknown terms. The unknown terms are 

computed adaptively. Then the error system is stabilized using integral sliding mode 

control. The stabilizing controller for the error system is constructed which consists of 

the nominal control plus some compensator control. To avoid the chattering 

phenomenon, smooth continuous compensator control is used instead of traditional 

discontinuous control. The compensator controller and the adapted law are derived in 

such a way that the time derivative of a Lyapunov function becomes strictly negative. 

Numerical simulations are shown to illustrate and validate the synchronization 

schemes presented in this thesis. 

5.3 Future Work 

After the successful completion of this thesis, some recommendations are made which 

must be considered in future work. The proposed control algorithm is also applicable 

to other chaotic systems. After going through some hard efforts to produce this 

research work, there are some areas which need future attention. The obvious future 

work is to implement the proposed control algorithm and control strategy on the 
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practical chaotic system and compare the simulated result with the real simulation of 

chaotic systems. 
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